OpenMolGRID

SPECIFICATION OF THE WORKFLOW FOR QSAR/QSAR MODEL DEVELOPMENT

Contract Reference: IST-2001-37238
Document identifier: OpenMolGRID-4-D4.3-0111-0-3-WorkflowMD
Date: 31/01/2004
Work package: WP 4: Grid Integration
Partner: UT, UU, Negri, FZJ, CGX
Lead Partner: FZJ
Document status: APPROVED
Classification: PUBLIC
Deliverable identifier: D4.3

Abstract: Specification of the workflow to be provided for Model Development
SPECIFICATION OF THE WORKFLOW FOR QSPR/QSAR MODEL DEVELOPMENT

Date: 31/01/2004

Delivery Slip

<table>
<thead>
<tr>
<th>From</th>
<th>Name</th>
<th>Partner</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathilde Romberg</td>
<td>FZJ</td>
<td>07/01/2004</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verified by</th>
<th>Name</th>
<th>Partner</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathilde Romberg</td>
<td>FZJ</td>
<td>07/01/2004</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Approved by</th>
<th>Name</th>
<th>Partner</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>G.H.F.Diercksen (TC)</td>
<td>OMC</td>
<td>25/01/2004</td>
<td></td>
</tr>
<tr>
<td>R.Ferenczi (QE)</td>
<td>CGX</td>
<td>23/01/2004</td>
<td></td>
</tr>
</tbody>
</table>

Document Log

<table>
<thead>
<tr>
<th>Issue</th>
<th>Date</th>
<th>Comment</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-0</td>
<td>03/12/2003</td>
<td>initial version</td>
<td>M.Romberg, B.Schuller</td>
</tr>
<tr>
<td>0-1</td>
<td>06/01/2004</td>
<td>update</td>
<td>M.Romberg</td>
</tr>
<tr>
<td>0-2</td>
<td>07/01/2004</td>
<td>update</td>
<td>M.Romberg</td>
</tr>
<tr>
<td>0-3</td>
<td>31/01/2004</td>
<td>approved version</td>
<td>M.Romberg</td>
</tr>
</tbody>
</table>

Document Change Record

<table>
<thead>
<tr>
<th>Issue</th>
<th>Item</th>
<th>Reason for Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>2.3, annex</td>
<td>incomplete information</td>
</tr>
<tr>
<td>0-2</td>
<td>all; MD process refined</td>
<td>input from UT</td>
</tr>
<tr>
<td>0-3</td>
<td>2</td>
<td>input from CGX, TC</td>
</tr>
</tbody>
</table>

Files

Files in this section relate to actual storage locations on the BSCW server located at https://hermes.chem.ut.ee/bscw/bscw.cgi. The URL below describes the location on BSCW from the root OpenMolGRID directory

<table>
<thead>
<tr>
<th>Software Products</th>
<th>User files / URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word 2000/XP</td>
<td>OpenMolGRID/Workpackage n/Deliverables/ OpenMolGRID-4-D4.3-0111-0-3-WorkflowMD</td>
</tr>
</tbody>
</table>
Project information

<table>
<thead>
<tr>
<th>Project acronym:</th>
<th>OpenMolGRID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project full title:</td>
<td>Open Computing GRID for Molecular Science and Engineering</td>
</tr>
<tr>
<td>Proposal/Contract no.:</td>
<td>IST-2001-37238</td>
</tr>
<tr>
<td>European Commission:</td>
<td></td>
</tr>
<tr>
<td>Project Officer:</td>
<td>Annalisa BOGLIOLO</td>
</tr>
<tr>
<td>Address:</td>
<td>European Commission - DG Information Society F2 - Grids for Complex Problem Solving B-1049 Brussels Belgium</td>
</tr>
<tr>
<td>Office:</td>
<td>BU31 4/79</td>
</tr>
<tr>
<td>Phone:</td>
<td>+32 2 295 8131</td>
</tr>
<tr>
<td>Fax:</td>
<td>+32 2 299 1749</td>
</tr>
<tr>
<td>E-mail</td>
<td>annalisa.bogliolo@cec.eu.int</td>
</tr>
<tr>
<td>Project Coordinator:</td>
<td>Mathilde ROMBERG</td>
</tr>
<tr>
<td>Address:</td>
<td>Forschungszentrum Jülich GmbH ZAM D-52425 Jülich Germany</td>
</tr>
<tr>
<td>Phone:</td>
<td>+49 2461 61 3703</td>
</tr>
<tr>
<td>Fax:</td>
<td>+49 2461 61 6656</td>
</tr>
<tr>
<td>E-mail</td>
<td>m.romberg@fz-juelich.de</td>
</tr>
</tbody>
</table>
Contents

1. INTRODUCTION ..5
 1.1. PURPOSE AND SCOPE ..5
 1.2. OVERVIEW ..5
 1.3. DOCUMENT STRUCTURE ...5

2. WORKFLOW SPECIFICATION ..6
 2.1. WORKFLOW DESCRIPTION ..6
 2.2. DATAFLOW MODEL ...6
 2.3. FLOWCHART DIAGRAM ...8

3. REFERENCES ...9

4. TERMINOLOGY / GLOSSARY ..10

ANNEX 1: XML SPECIFICATION FOR MD WORKFLOW ...11
1. Introduction

1.1. Purpose and Scope

Molecular descriptors are used to characterize molecular structures and thereby provide the basis for a measure for molecular similarity. QSPR/QSAR model building (see [1]) uses the descriptor values of compounds to generate predictive models for the estimation of chemical property or biological activity values. In this document the workflow for model building based on available descriptor values is modelled within the Grid infrastructure UNICORE ([2]).

Workpackage 2, Molecular Descriptor Generation and QSAR Model Building on the Grid, will adapt multiple existing software packages for the QSPR/QSAR analysis to be executed in the Grid environment. Client plugins and adapter components will be developed. Here we are specifying the workflow for QSAR/QSAR model building which will be used as input to the MetaPlugin specified in [3].

1.2. Overview

OpenMolGRID is mainly interested in statistical models based on descriptor values related to the 3D structure of a compound. Therefore the model building process uses the data generated during descriptor calculation (see [4]). The workflow for QSPR/QSAR model building comprises two major steps: the generation of the condensed compound - descriptor value - matrix and the model building itself. The workflow with support from the MetaPlugin ([3]) will guide the user through the process and hide all tasks which can be prepared and done automatically (i.e. data conversion, data transfer) away from the user. The knowledge about prerequisites of applications come from the metadata attached to the corresponding UNICORE application resource.

The workflow is specified at different views: Verbal, as data flow model, and as flowchart to describe all aspects of the process. The XML file with the exact input for the MetaPlugin is attached.

1.3. Document Structure

The document contains in Section 2 the different views of the workflow, Section 3 and Section 4 hold references and glossary, and Appendix 1 gives the XML representation of the workflow.
2. Workflow Specification

The goal of the processes under consideration is to find compounds with certain property and/or activity values. From experience it is known that molecules with similar descriptor values have similar chemical property and biological activity values. The prediction model established by the workflow under consideration in this deliverable correlates descriptor values to properties and activities. The major input for it are the descriptor values calculated in the previous step ([4]).

Software packages (SW packages) exist to do model building. The SW packages relevant to OpenMolGRID (e.g. Codessa mda) are integrated into UNICORE in WP2. In WP4 the workflow for model development is integrated. The UNICORE Client plugin on control structure level designed in [3] will be used here and fed with a workflow, the one for model building. The workflow has been compiled from the WP2 use cases ([5]) by the project partners UT, CGX, UU, and FZJ in a face-to-face meeting in April 2003.

2.1. Workflow Description

The prerequisite is that all necessary data (structure information, descriptor id -value pairs, descriptor names, descriptor ids, property names, property ids, and property id – value pairs) is available in the data warehouse (MOLDW) or the custom data repository (CDR) or another data source. The verbal description of the workflow contains the steps to be processed together with examples of software packages and corresponding data formats.

The following steps are processed by the user to do model development:

1. Query property id for a property name
2. Query descriptor ids for a set of descriptor names
3. Query structure ids of structures with the relevant property id
4. Query descriptor id – value pairs for the set of descriptor ids per structure id
5. Query property id – value pair for the relevant property id and experiment per structure id
6. Get parameters for matrix generation from user input and generate input matrix for model building (output is a is a delimited text file compatible with STATISTICA)
7. Get parameters for model building from user input and build models (e.g. run Codessa on matrix for model building; generates n files containing one model each in PMML format)
8. Store output (list of files with one model each) to permanent file space and/or CDR
9. Done

2.2. Dataflow Model

The workflow for model building is mainly determined by the data to be exchanged between the applications. Therefore, the dataflow for the model building process is specified in two diagrams, first the high-level dataflow showing the data sources, the relevant input data, the produced output data, and its destination. The second diagram shows the internals of the model building process. Each circle contains an application which wraps a SW package, the arrows show the direction of the dataflow and which data goes from one step to the other. Data coming from data sources goes in without specifying the sources but it matches exactly what is specified in the high-level dataflow diagram. The same holds for output data.
Figure 1: Top-level dataflow model for Model Development

Figure 2: Detailed dataflow model for Model Development
2.3. Flowchart Diagram

The flowchart for the process of model development given in Figure 3 is quite simple as it does not contain any loops nor manual user intervention nor tasks which can be split to run on several target systems in parallel. The user provides the input for querying the data source and selects descriptor names from a list available from a data source. The data generated in each step is forwarded to its successor step. The generated models are stored to permanent file space.

![Figure 3: Model Development Flowchart](image)

![Figure 4: Legend for Flowchart Diagram](image)
3. References

[1] Deliverable D2.4a
Description of the quantitative structure property/activity relation model: model building and application

[2] Deliverable D4.5a,
Description of the OpenMolGRID Grid architecture, security architecture, and infrastructure and the deployment of the project’s testbed

[3] Deliverable D4.2a
Specification of the Grid Interface for Classes of Applications to Support Automated Workflows

[4] Deliverable D4.2c
Specification of the Workflow for Descriptor Calculation

[5] Deliverable D2.1
Specification of software modules for descriptor calculation and model development and their Grid interface components
4. Terminology / Glossary

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AJO</td>
<td>Abstract Job Object</td>
</tr>
<tr>
<td>CAS</td>
<td>Chemical Abstracts Service</td>
</tr>
<tr>
<td>DBAT</td>
<td>Database Access Tool</td>
</tr>
<tr>
<td>FZJ</td>
<td>Forschungszentrum Jülich</td>
</tr>
<tr>
<td>GUI</td>
<td>Graphical User Interface</td>
</tr>
<tr>
<td>JRE</td>
<td>Java Runtime Environment</td>
</tr>
<tr>
<td>MOLDW</td>
<td>OpenMolGRID Data Warehouse</td>
</tr>
<tr>
<td>NJS</td>
<td>Network Job Supervisor</td>
</tr>
<tr>
<td>NTP</td>
<td>National Toxicity Program</td>
</tr>
<tr>
<td>SQL</td>
<td>Structured Query Language</td>
</tr>
<tr>
<td>UNICORE</td>
<td>Uniform Interface to Computer Resources</td>
</tr>
<tr>
<td>UU</td>
<td>University of Ulster</td>
</tr>
<tr>
<td>WP</td>
<td>Work Package</td>
</tr>
<tr>
<td>XML</td>
<td>Extensible Markup Language</td>
</tr>
</tbody>
</table>
Annex 1: XML Specification for MD Workflow

The following XML document contains the Document Type Definition together with the representation of the workflow for QSPR/QSAR model development. The task names chosen in the workflow are preliminary as they correspond to the task identifier the applications provide as part of their metadata. The list of task names agreed on in the project will be compiled later.

```xml
<?xml version="1.0" ?>
<!DOCTYPE workflow [ 
<!ELEMENT workflow (task*, group*, dependency*)> 
<!ELEMENT task (option*)> 
<!ELEMENT option EMPTY> 
<!ATTLIST option 
name     CDATA #REQUIRED 
value    CDATA #REQUIRED 
> 
<!ATTLIST task 
name        CDATA #REQUIRED 
identifier  CDATA #REQUIRED 
id          CDATA #REQUIRED 
export      (true | false) #REQUIRED 
split       (true | false) #REQUIRED 
> 
<!ELEMENT group (option*, task*, group*, dependency*)> 
<!ATTLIST group 
type        (subjob | repeat | doN | if | then | else) #REQUIRED 
identifier  CDATA #REQUIRED 
id          CDATA #REQUIRED 
split       (true | false) #REQUIRED 
> 
<!ELEMENT dependency EMPTY> 
<!ATTLIST dependency 
pred        CDATA #REQUIRED 
succ        CDATA #REQUIRED 
> 
]> 

<workflow>
<!-- specification of Model Development workflow -->

<task name="DataBaseRequest" identifier="Get_PropId" id="1" export="false" split="false">
</task>
<task name="DataBaseRequest" identifier="Get_DescIDs" id="2" export="false" split="false">
</task>
<task name="DataBaseRequest" identifier="Get_StructureIDs" id="3" export="false" split="false">
</task>
<task name="DataBaseRequest" identifier="Get_Values" id="4" export="false" split="false">
</task>
<task name="ExtractDataFromDataBaseRequest" identifier="DataPreparation" id="5" export="false" split="false">
</task>
<dependency pred="1" succ="3" />
<dependency pred="2" succ="4" />
<dependency pred="3" succ="4" />
<dependency pred="4" succ="5" />
<task name="MatrixGeneration" identifier="Matrix" id="6" export="false" split="false">
</task>
</workflow>
```
<task name="ModelDevelopment" identifier="Model" id="7" export="true" split="false">
 <dependency pred="5" succ="6" />
 <dependency pred="6" succ="7" />
</task>