
INFORMATION SOCIETY TECHNOLOGIES
(IST)

PROGRAMME

O p e n M o l G R I D

S P E C I F I C A T I O N O F T H E G R I D I N T E R F A C E F O R

C L A S S E S O F A P P L I C A T I O N S T O S U P P O R T

A U T O M A T E D W O R K F L O W S

Contract Reference: IST-2001-37238

Document identifier: OpenMolGRID-4-D4.2a-0109-0-4-
MetaPlugin

Date: 21/11/2003

Work package: WP 4: Grid Integration

Partner UT, UU, NEGRI, FZJ, CGX

Lead Partner FZJ

Document status: Approved

Classification: PUBLIC

Deliverable identifier: D4.2a

Abstract: This document contains the specification of the UNICORE client components
(MetaPlugin, Resource information provider, OpenMolGRID containers, workflow
description language), UNICORE server components (application wrappers, metadata) that
provide support for automated workflows in UNICORE

Doc. Identifier:
OpenMolGRID-4-D4.2a-0109-0-4-
MetaPlugin

Specification of the Grid interface for classes of
applications to support automated workflows Date: 21/11/2003

Delivery Slip

Name Partner Date
From B. Schuller FZJ 5/11/2003

Verified by M.Romberg FZJ 5/11/2003

Approved by
G.H.F.Diercksen(TC)
R. Ferenczi (QE)

OMC
CGX

21/11/2003
13/11/2003

Document Log
Issue Date Comment Author
0-0 14/10/2003 initial version M.Romberg, B.Schuller
0-1 15/10/2003 Structural changes B. Schuller, M. Romberg
0-2 05/11/2003 B. Schuller, M. Romberg
0-3 17/11/2003 B. Schuller, M. Romberg
0-4 21/11/2003 B. Schuller, M. Romberg

Document Change Log
Issue Item Reason for Change

0-2
wording, spelling, clarity of
presentation improved internal review process

0-3
Appendix A, section 4 and
figure 7 updated internal review process

0-4
Typos corrected, figures 1 and
8 replaced by new version Internal review process

Files
Files in this section relate to actual storage locations on the BSCW server located at
https://hermes.chem.ut.ee/bscw/bscw.cgi. The URL below describes the location on BSCW
from the root OpenMolGRID directory

Software Products User files / URL

Word 2000/XP
OpenMolGRID/Workpackage 4/Deliverables/
OpenMolGRID-4-D4.2a-0109-0-4-MetaPlugin

IST-2001-37238 PUBLIC 2 / 25

Doc. Identifier:
OpenMolGRID-4-D4.2a-0109-0-4-
MetaPlugin

Specification of the Grid interface for classes of
applications to support automated workflows Date: 21/11/2003

Project information

Project acronym: OpenMolGRID

Project full title:
Open Computing GRID for Molecular Science and
Engineering

Proposal/Contract no.: IST-2001-37238

European Commission:

Project Officer: Annalisa Bogliolo

Address:
European Commission - DG Information Society
F2 - Grids for Complex Problem Solving
B-1049 Brussels - Belgium

Office: BU31 4/79

Phone: +32 2295 81 31

Fax: +32 2299 17 49

E-mail annalisa.bogliolo@cec.eu.int

Project Coordinator: Mathilde Romberg

Address:
Forschungszentrum Jülich GmbH
ZAM
D-52425 Jülich - Germany

Phone: +49 2461 61 3703

Fax: +49 2461 61 6656

E-mail m.romberg@fz-juelich.de

IST-2001-37238 PUBLIC 3 / 25

Doc. Identifier:
OpenMolGRID-4-D4.2a-0109-0-4-
MetaPlugin

Specification of the Grid interface for classes of
applications to support automated workflows Date: 21/11/2003

Contents

1. INTRODUCTION

1.1. PURPOSE AND SCOPE..5
1.2. DOCUMENT OVERVIEW..5
1.3. DOCUMENT STRUCTURE...6

2. OVERVIEW OF REQUIREMENTS

2.1. FUNCTIONAL REQUIREMENTS...7
2.2. NON-FUNCTIONAL REQUIREMENTS... 7
2.3. USER INTERFACE REQUIREMENTS..7

3. SPECIFICATION OF THE METAPLUGIN AND SUPPORTING SOFTWARE

3.1. WORKFLOWS...8
3.1.1. Tasks...8
3.1.2. Groups..9
3.1.3. Dependencies ...9

3.2. METAPLUGIN: OVERVIEW...9
3.3. WORKFLOWBUILDER...9
3.4. RESOURCEALLOCATOR..10
3.5. METACONTAINER...11
3.6. THE GRAPHICAL USER INTERFACE.. .. 12
3.7. USER SETTINGS AND DEFAULTS MANAGEMENT...12

4. OPENMOLGRID APPLICATION PLUGINS

4.1. THE ICHAINABLE INTERFACE..13
4.1.1. Task Control..13
4.1.2. Application Control...13
4.1.3. Input Control...14
4.1.4. Output control...14

5. SERVER SIDE WORKFLOW SUPPORT: ABSTRACT RESOURCE INTERFACE

5.1. APPLICATIONS ...15
5.2. APPLICATION METADATA SPECIFICATION...16

5.2.1. Metadata overview..16
5.2.2. Namespaces...16
5.2.3. Description of tags used in metadata...16
5.2.4. Example metadata file...18

6. RESOURCE MANAGEMENT

6.1. THE IRESOURCEINFOPROVIDER INTERFACE...19
6.2. GETTING A RESOURCEINFOPROVIDER INSTANCE..20

7. REFERENCES

8. TERMINOLOGY / GLOSSARY

9. APPENDIX A: XML DOCUMENT STYLE FOR WORKFLOW DESCRIPTION

9.1. TASKS...23
9.1.1. Subtags..23

9.2. OPTIONS..23
9.3. GROUPS..23

9.3.1. Subtags of <group>...23
9.3.2. DoN group ..23
9.3.3. If group...24
9.3.4. Testing return codes..24

9.4. DEPENDENCIES...24
9.5. SUMMARY...24

IST-2001-37238 PUBLIC 4 / 25

Doc. Identifier:
OpenMolGRID-4-D4.2a-0109-0-4-
MetaPlugin

Specification of the Grid interface for classes of
applications to support automated workflows Date: 21/11/2003

1. Introduction

1.1. Purpose and scope
This document specifies the software architecture that is needed to add support for complex
workflows to the base UNICORE system. Based on this architecture, the processes used within
OpenMolGRID, such as molecular design and engineering, will be implemented.
An extension to the UNICORE client, called “MetaPlugin”, is specified. It deals with workflow
support and is supplemented by components for resource management. On the server side we specify
the application layer (Abstract Resource Interface) needed for workflow support.
The architecture that is specified in this document is put into the general OpenMolGRID context in
Deliverable D4.5a [1].

1.2. Document Overview
OpenMolGRID uses the basic UNICORE infrastructure and extends it in various ways to provide
support for complex workflows.
Figure 1 shows an overview of the workflow support components specified in this document.

On the client side, workflow support is provided by an extension component to the base UNICORE
client which is called MetaPlugin, and several supporting components.
The MetaPlugin basically provides a UNICORE job group, which can contain subjobs and subtasks of
arbitrary complexity. However, in contrast to the standard job group, the MetaPlugin contains added
functionality. This can be summarised in two main topics:
• Read workflows and build UNICORE jobs from them

• Find and allocate resources needed for the job

The workflows are specified in XML format which is read by the MetaPlugin. From this workflow a
UNICORE job is build within the job preparation area of the client. A component for resource
management is used to find UNICORE sites and other resources that are needed for the job.
Application specific interfaces (Plugins) supporting automated workflows communicate with the
MetaPlugin via a special interface.

IST-2001-37238 PUBLIC 5 / 25

Figure 1: Overview of components for Workflow support

 UNICORE Servers (VSites)

 UNICORE Client

Application
Plugin

WORKFLOW
DESCRIPTION

<XML>

 Application

Resource
Management

 Metadata <XML>

MetaPlugin

OpenMolGRID

UNICORE

Applications

Doc. Identifier:
OpenMolGRID-4-D4.2a-0109-0-4-
MetaPlugin

Specification of the Grid interface for classes of
applications to support automated workflows Date: 21/11/2003

On the server side, the software packages have to be wrapped by UNICORE applications. A metadata
file describes the capabilities and specifics of the application to the client components.

1.3. Document Structure
The requirements that were used to design the workflow support components are given in section 2.
Section 3 specifies the MetaPlugin. The interface between the MetaPlugin and the application plugins
used by OpenMolGRID is specified in section 4. The server side application architecture is specified
in section 5. Section 6 deals with resource management, specifiying the interfaces between the
MetaPlugin and the resource management components.

IST-2001-37238 PUBLIC 6 / 25

Doc. Identifier:
OpenMolGRID-4-D4.2a-0109-0-4-
MetaPlugin

Specification of the Grid interface for classes of
applications to support automated workflows Date: 21/11/2003

2. Overview of Requirements

The OpenMolGRID workflow support is subject to various requirements, since it has to provide a
certain functionality (functional requirements), it is embedded into the UNICORE infrastructure (non-
functional requirements) and it has to offer its functionality to the user (user-interface requirements).

2.1. Functional requirements
Several use cases have been defined in WP2 and WP3 for their applications and workflows, which
lead to the following functional requirements for the workflow support components.
The workflow support component has to
• Offer predefined workflow(s) with major tasks and dependencies being visible

• Allow modification of the workflow by the user

• Insert tasks for data conversion (i.e. input preparation appropriate for generation of 3D structures)
wherever the application cannot take care of it by itself

• Look for matches between output file input file specifications of two sequential applications in the
workflow and insert appropriate data conversion applications if necessary

• Allow for user intervention at predetermined positions in the workflow

• Distribute tasks to multiple Vsites

• Estimate resource requirements for single tasks (don’t ask the user)

• Select application resource

• Select target site(s)

• Insert transfer tasks where necessary (i.e. when different Vsites for subsequent steps in the
workflow have been selected)

• Store intermediate results of the major tasks

2.2. Non-functional Requirements
The OpenMolGRID client software is based on the UNICOREpro client release 1.0.7.
The plugins used as application specific interfaces have to be useable by themselves, i.e. outside of a
workflow. This means that the workflow support in application plugins has to be an addition to the
usual plugin interface, not a replacement for it.

2.3. User Interface Requirements
The user interface requirements have emerged as the result of intensive discussions on workflows
during a technical meeting in April 2003:
• The job preparation menu provides an “Add OpenMolGRID Workflow“ option which offers

several predefined workflows, i.e. “Descriptor Calculation” or “3D Molfile and Mopac file
generation” for loading

• The job tree is displayed on the left hand side
• The expanded job tree with dependencies is displayed on the right hand side of the job preparation

window
• Automatically generated tasks are not displayed (wherever possible)
• User may edit the job tree
• User has to fill in additional input for major tasks
• The interface guides the user in finding the places where input is necessary
• Job monitoring displays status of all major tasks
• User may check for intermediate results of predetermined job steps, edit them, and release the

subsequent step(s) in the workflow
These requirements as a whole are taken as foundation for the specification of the MetaPlugin.

IST-2001-37238 PUBLIC 7 / 25

Doc. Identifier:
OpenMolGRID-4-D4.2a-0109-0-4-
MetaPlugin

Specification of the Grid interface for classes of
applications to support automated workflows Date: 21/11/2003

3. Specification of the MetaPlugin and Supporting Software

The OpenMolGRID MetaPlugin is capable of dealing with arbitrary workflows. The workflows are
formulated in an XML language, which is specified in Appendix A. The MetaPlugin reads such a
workflow e.g. from a file and generates the UNICORE job tree from it. The following Figure 2 gives
an overview of the roles and functionalities of the MetaPlugin.

The following can be regarded as input to the MetaPlugin:

• Workflow description (in XML format)

• User preferences (defaults)

• Server resources (applications, compute resources, storage, databases, ...)

• Client resources (available plugins, resource management components, ...)

From this, the MetaPlugin generates a UNICORE job in the job preparation area (JPA) of the
UNICORE client.

3.1. Workflows
Workflows consist of tasks, groups and dependencies, all of which have their UNICORE job
preparation area (JPA) counterparts. The workflows in OpenMolGRID will be specified in an XML
language, which is given in Appendix A: XML document style for workflow description. The present
section defines the concepts used in the rest of this chapter.

3.1.1. Tasks
The workflows used in OpenMolGRID are based on the task concept. A task is a single step of a more
complex whole, characterized by well defined input and output.
Tasks are supported client-side either by built-in client functionality (for example shell scripts, which
is supported by the built-in ScriptTask) or by plugins.
Built-in UNICORE tasks relevant to OpenMolGRID are
• Script: shell scripts
• Hold: hold a job forever (i.e. until user manually initiates the job continuation)

IST-2001-37238 PUBLIC 8 / 25

OpenMolGRID
MetaPlugin

Workflow
(XML)

User
Preferences

Server Resources
(Applications, compute
 re-sources, storage, ...)

Client Resources
(Plugins, resource

management, ...)

Figure 2: Functionality of the MetaPlugin

Doc. Identifier:
OpenMolGRID-4-D4.2a-0109-0-4-
MetaPlugin

Specification of the Grid interface for classes of
applications to support automated workflows Date: 21/11/2003

Within OpenMolGRID, a lot of tasks will be defined, such as Database requests, decriptor calculation
steps, 2D to 3D conversion of molecular structures, etc. The name of the task is used to match server
side and client side resources in order to execute it, as will be explained in more detail in sections 3.3
and 3.4.

3.1.2. Groups
Groups are containers for tasks and other groups. UNICORE supports the following groups

• sub job: a container for subtasks and subgroups

• DoN: iterate contents N times

• DoRepeat: repeat until condition matches

• IfThenElse: decision making, with Then and Else subgroups

3.1.3. Dependencies
Dependencies indicate which job components have to wait for other job components to finish before
they can be executed.

3.2. MetaPlugin: overview

The MetaPlugin will be realised as a UNICORE task plugin itself, and follow the plugin interface
described in reference [2]. However, the MetaPlugin needs to provide a jobgroup, and not only a
single task.
UNICORE task plugins consist of three main classes,

• The main plugin class

• The JPAPanel providing a GUI to the contents of one container in the Job Preparation area

• The container class that encapsulates the UNICORE AJO funtionality, and is used to store the
current state of the GUI.

The hierarchy of the main classes of the MetaPlugin is shown in Figure 3.

The MetaPlugin is highly modularised, the various components will be specified in the rest of this
chapter.

IST-2001-37238 PUBLIC 9 / 25

Figure 3: Hierarchy of the main MetaPlugin classes

Doc. Identifier:
OpenMolGRID-4-D4.2a-0109-0-4-
MetaPlugin

Specification of the Grid interface for classes of
applications to support automated workflows Date: 21/11/2003

3.3. WorkflowBuilder
The WorkflowBuilder expects a workflow description in XML format as input, as specified in
Appendix A: XML document style for workflow description. From this, it generates a job tree in the
job preparation area.

Figure 4 shows the basic functionality of the WorkflowBuilder.
• It provides a method parse() that takes a workflow in XML format, parses it, and builds a

UNICORE job in the job preparation area of the UNICORE client
• It communicates with a ResourceInfoProvider, that can be queried about the capabilities (i.e.

supported tasks) of plugins. The interface to the ResourceInfoProvider will be specified in section
6.1

• It gets container instances from the appropriate plugins, using the method
getContainerInstance()

• It modifies the job preparation area (the JPATree) of the UNICORE client, e.g. by inserting
containers. The JPATree modification is done via a utility class MetaTreeTool, since most of the
functions are needed in the ResourceAllocator as well

3.4. ResourceAllocator
This component of the MetaPlugin deals with resource allocation for the job. In the simplest case this
means finding out where (i.e. on which Vsites) the application resources needed for executing the job
can be found. Then, the Vsite for each subjob and application for each task are set. Depending on the
resources available, a restructuring of the job tree might become necessary.

To accomplish this, the MetaPlugin needs the resource information of all Vsites that are available to
the user. These resources include the application resources with their metadata.

As a result of running the resource allocation process on a job, the job should be ready for immediate
submission. All the dependencies should be correctly set, input and output files of subsequent job
steps should match. However, there is some information that might be needed from the user, such as
datasource to be accessed, or special parameters and for some applications. Therefore, it is not
possible to have the ResourceAllocator generate a job that is immediately submittable.

IST-2001-37238 PUBLIC 10 / 25

Figure 4: Functionality of the WorkflowBuilder

Doc. Identifier:
OpenMolGRID-4-D4.2a-0109-0-4-
MetaPlugin

Specification of the Grid interface for classes of
applications to support automated workflows Date: 21/11/2003

Figure 5 shows the basic functionality of the ResourceAllocator. It provides a method update
(JobContainer job) that takes a JobContainer as input. This method

• Finds one or more sites with the resources to execute the given (sub)job. For this it communicates
with a ResourceInfoProvider using the interface specified in section 6.1.

• Matches input and output of the tasks contained in the JobContainer, based on the dependencies
stored in the container. For this matching it uses an interface called IChainable, provided by
OpenMolGRID task container classes, which is specified in section 4.1

• Sets the Application that tasks use, again making use of the IChainable interface

• Depending on the server resources found, it might become necessary to regroup tasks into subjobs,
insert transfer tasks, etc. Therefore, the ResourceAllocator needs to modify the Job Preparation
tree. For this it uses the MetaTreeTool utility class

• User preferences stored in the MetaDefaults class are taken into account. This can be used as a
“conflict resolution” strategy, for example in case multiple possible Sites offer the same
application, or multiple applications offer the same task

3.5. MetaContainer
The container class used for the MetaPlugin subclasses the JobContainer class, since it contains the
full OpenMolGRID job in the form of the tasks and groups.
The functionality of the MetaContainer is provided in two methods.

• parseWorkflow(workflow: String) takes a workflow description in XML format as
input, parses it and builds the corresponding UNICORE JPA tree

• update() updates the job based on available resources. This method corresponds to calling
ResourceAllocator.update(), which has been described in section 3.4.

Figure 6 shows the MetaContainer class hierarchy.

IST-2001-37238 PUBLIC 11 / 25

Figure 5: Functionality of the ResourceAllocator

Doc. Identifier:
OpenMolGRID-4-D4.2a-0109-0-4-
MetaPlugin

Specification of the Grid interface for classes of
applications to support automated workflows Date: 21/11/2003

3.6. The graphical user interface
The GUI for the MetaPlugin has three distinct areas.
1) Workflow control:

• The user can select a workflow definition from a predefined list and load it into the job
preparation area (and the job container)

• The user can update the current contents of the job container.
• The dependencies are shown

2) Job control, allowing access to basic UNICORE functions, such as manual USite/VSite selection
and resource set editing

3) Information about the current status of the job preparation is shown to the user.
As usual in the UNICORE client, the state of the GUI is stored in the Container class, and can be
saved and restored using the “File/Save(As...)” and “File/Load” functions of the client.

3.7. User Settings and Defaults Management
MetaPlugin default handling is done as usual in the UNICORE client: The main plugin class offers a
function getSettingsItem() which is called by the client when the user selects “MetaPlugin
defaults” in the “Settings” menu.
Defaults are used to store all user preferences relating to workflow management. These include, but
are not limited to
• Preferred resource allocation schemes (see also section 6). These include preferred Sites, or

preferred applications
• Predefined workflows. The MetaPlugin GUI offers a list of workflows. This list is editable and can

be stored as part of the defaults.

IST-2001-37238 PUBLIC 12 / 25

Figure 6: MetaPlugin container class hierarchy

Doc. Identifier:
OpenMolGRID-4-D4.2a-0109-0-4-
MetaPlugin

Specification of the Grid interface for classes of
applications to support automated workflows Date: 21/11/2003

4. OpenMolGRID application plugins

The MetaPlugin uses a special interface to the container classes designed for OpenMolGRID, in order
to

• Query plugins for the tasks they support,

• Match input and output of subsequent tasks automatically,

• Set the application to be used

• Set and query the task that is to be executed

• Set additional options for a task

This interface, called IChainable, has to be implemented by application plugin container classes. It
is used by various components in the workflow building and resource allocation process, as Figure 7
shows.

4.1. The IChainable interface
This interface deals with all the aspects necessary to set up a single task container in a complex job
based on an abstract workflow description. The rest of this section provides a brief overview of the
functionality offered by this interface. A more detailed description of the methods is given in the
JavaDoc of the IChainable class, available on the project documentation server.

4.1.1. Task Control
In our terminology, a “task” is a specific, well-defined executable element of a workflow, such as
“descriptor calculation or “Database request”. A task is identified by its name only, and characterised
by the input it needs and the output it produces.
A plugin has to advertise the tasks it supports. This is achieved by the function
getSupportedTasks(). It returns an array of task names (as Strings).

The task to be executed can be set and queried using the setTask() and getTask() functions.

4.1.2. Application Control
The Application resource needed for executing the given task can be set (and queried again) using
setApplication() and getApplication().

4.1.3. Input Control

IST-2001-37238 PUBLIC 13 / 25

Figure 7: Uses of the IChainable interface

Doc. Identifier:
OpenMolGRID-4-D4.2a-0109-0-4-
MetaPlugin

Specification of the Grid interface for classes of
applications to support automated workflows Date: 21/11/2003

Name and type of input data files can be set using the function addInputDataFile(). A function
clearInputData() is provided for resetting the input data.

4.1.4. Output control

An application produces zero or more files of one or more well-defined types. The methods
setOutfileName(String name, String fileType) and getOutfileName
(String fileType) are provided to set and get the name of the output file(s) of a given type.
The method getOutfileTypes() can be used to query a list of all output file types.
The plugin is requested to export the outcome of the task by using the doExport() method, which
takes a boolean parameter. Plugins are free to decide if and how they honor this request. In some
cases, the plugin might export all results to the user's client machine, in some cases only one file
might be exported.

IST-2001-37238 PUBLIC 14 / 25

Doc. Identifier:
OpenMolGRID-4-D4.2a-0109-0-4-
MetaPlugin

Specification of the Grid interface for classes of
applications to support automated workflows Date: 21/11/2003

5. Server side workflow support: Abstract Resource Interface

Software packages that are used to perform tasks in OpenMolGRID are wrapped with UNICORE
Applications in a standardized way, in order to support automated workflow handling.
Metadata is used to convey information about the functionality offered by an Application (and thus a
software package) to the UNICORE client. This information is used on the one hand by the workflow
support components (WorkflowBuilder, ResourceAllocator), on the other hand it is used by the
Application specific plugin.

5.1. Applications
In OpenMolGRID, software (SW) packages are integrated into UNICORE in a standardized way: a
SW package is always accompanied by a wrapper (application) which takes standardized control input
in XML format that tells the application how it has to proceed. The application gets the input for the
SW package, which is in a standardized format wherever it makes sense. Output from the SW package
has to be converted to a standard format analogously. The return codes from the SW package have to
be provided to the outside world.

An application supports one or more tasks, i.e. single steps of execution, characterised by input and
output .
As input, it expects a “control file”, and zero or more input data files of well-defined types.

As output, zero or more files of well-defined types are produced.

There are some points worth mentioning:
• “tasks” are identified by name only. i.e. tasks are considered equal when their names are equal.

• The Application “XML control files” are not considered in the list of input files. The rationale for
this is that the XML control files are created by the Client plugin. This has a disadvantage: the
description of the application on the server is not really complete. It is complete only in conjuction
with the appropriate plugin. However, in the present state of UNICORE a more complete interface
description does not make sense. As UNICORE moves towards the Open Grid Services

IST-2001-37238 PUBLIC 15 / 25

Figure 8: OpenMolGRID Application Architecture

Software Package

Application

Application Metadata

input conversion output conversion

control file

input data file(s)input data file(s)

output data file(s)

Information for plugin

Doc. Identifier:
OpenMolGRID-4-D4.2a-0109-0-4-
MetaPlugin

Specification of the Grid interface for classes of
applications to support automated workflows Date: 21/11/2003

Architecture (OGSA), it will become clear how the interfaces to present services such as
applications need to be described.

5.2. Application metadata specification
This section gives the present state of the metadata specification.
It is expected that the current metadata specification will be extended, especially with regard to
resource description, and resource requirements of the applications.

5.2.1. Metadata overview
The following figure 9 gives an overview of the XML markup elements for application metadata.
The meaning of the tags used is given in section 5.2.3 below.

5.2.2. Namespaces
Metadata contain information for workflow support and application plugin specific information, two
namespaces are used.

Prefix Namespace Description

omgsdl http://www.openmolgrid.org/namespaces/omgsdl Information for the MetaPlugin(workflow
support)

app application dependent Application plugin specific information

The “application dependent” metadata (in the “app” namespace) is ignored by the workflow support
components. However, application plugins can use this metadata for their own purposes. It is up to the
application and plugin developers to specify if and how application specific metadata are used.

5.2.3. Description of tags used in metadata
The following table gives tag names, their attributes and a description of the tag's meaning.

IST-2001-37238 PUBLIC 16 / 25

Figure 9: Metadata markup elements

Doc. Identifier:
OpenMolGRID-4-D4.2a-0109-0-4-
MetaPlugin

Specification of the Grid interface for classes of
applications to support automated workflows Date: 21/11/2003

Tag Meaning

application Base tag for the metadata file

task (subtag of “application”)

 attributes: name, description

Task description, name and description as attributes.

input (subtag of “task”) Input specification, can contain “infile” tags

output (subtag of “task”) Output specification, can contain “outfile” tags

infile (subtag of “input”)
 attributes: “type”

 “use”

Input file specification. The “type” attribute defines the
type. A list of types used within OMG will be compiled by
the project partners.
The “use” attribute can be “required” or “optional” and
indicates whether or not the file needs to be present.

outfile (subtag of “output”)
 attributes: “type”

 “occurs”

Output file specification. The “type” attribute defines the
type. The “occurs” attribute specifies that one or more of
these files may be present in the output, occurs=”multiple”,
or that output may be missing, i.e. occurs=”optional”.

appspecific (subtag of “application”) Contains application specific info, i.e. info intended for the
Application plugin. This will usually be XML as well, in
the “app” namespace.

IST-2001-37238 PUBLIC 17 / 25

Doc. Identifier:
OpenMolGRID-4-D4.2a-0109-0-4-
MetaPlugin

Specification of the Grid interface for classes of
applications to support automated workflows Date: 21/11/2003

5.2.4. Example metadata file
This is a commented metadata example. It (partly) describes an application providing data type
conversions.

<?xml version="1.0"?>

<omgsdl:application xmlns:omgsdl="http://www.openmolgrid.org/namespaces/omgsdl"
 xmlns:app="http://www.openmolgrid.org/namespaces/fileop">

The namespaces used in the XML file are defined. the “omgsdl” namespace defines the metadata
schema, the “app” namespace defines the elements pertaining to the application specific plugin.

 <omgsdl:task
 name="ExtractDataFromDataBaseRequest"
 description="Splits data base request output file into subfiles">

This defines a task by its name. A human-readable description is added.

 <omgsdl:input> <!-- describe input of tool -->
<omgsdl:infile

 type= "http://www.openmolgrid.org/namespaces/dbat_output"
use="required"/>

</omgsdl:input>

This is an input definition. An input file of the given type (identified by an XML namespace) is
required for the task.

<omgsdl:output> <!-- describe output of tool -->
 <omgsdl:outfile type="OMG_ANYTYPE" occurs="multiple"/>

</omgsdl:output>

The task produces one or more' output files of one, unspecified type.

 </omgsdl:task>

<!-- application specific information follows, can be left empty if not applic
able -->

<!-- this part will be evaluated by the Client plugin handling the application
-->
 <omgsdl:appspecific>

The “appspecific” element contains content that is to be evaluated by the application specific plugin.
The definition of the format is up to the application developers.

 <app:fileop_meta>
 </app:fileop_meta>

The content of the “appspecific” tag belongs to a different XML namespace. In this example there is
no content:

 </omgsdl:appspecific>
</omgsdl:application>

IST-2001-37238 PUBLIC 18 / 25

Doc. Identifier:
OpenMolGRID-4-D4.2a-0109-0-4-
MetaPlugin

Specification of the Grid interface for classes of
applications to support automated workflows Date: 21/11/2003

6. Resource Management

The MetaPlugin needs resource information to find out where (on which Vsites) tasks can be run. On
the client side, information about the capabilities of the available plugins has to be evaluated. This
information is handled by a component called ResourceInformationProvider. It interfaces to the
MetaPlugin (or other interested parties) via an interface IResourceInfoProvider.

6.1. The IResourceInfoProvider interface
This interface provides methods that clients can use to request information about server side resources
and client plugin capabilities.

The following methods provide information about a given task identified by name:

• getPluginsForTask(): returns a list of client plugins that support the task

• getProvidersForTask(): returns a list of OMGTaskProvider objects containing information
on which servers the task can be executed

A OMGTaskProvider specifies the grid node (UNICORE Usite and Vsite) and the Application
that support the given task.

IST-2001-37238 PUBLIC 19 / 25

Figure 10: The IResourceInfoProvider interface and related classes

Doc. Identifier:
OpenMolGRID-4-D4.2a-0109-0-4-
MetaPlugin

Specification of the Grid interface for classes of
applications to support automated workflows Date: 21/11/2003

6.2. Getting a ResourceInfoProvider Instance
To make the MetaPlugin components independent of a specific ResourceInfoProvider implemen-
tation, a management component called RIPManager is introduced. A RIPManager instance can be
provided as e.g. another UNICORE client plugin. The use of a manager for ResourceInfoProvider
instances gives added flexibility and extensibility of the system.
The interface to a RIPManager offers two functions:
• getResourceInfoProvider() returns a ResourceInfoProvider instance
• refreshResourceInfo()updates the given ResourceInfoProvider instance
Figure 11 shows the process of getting a ResourceInfoProvider instance.

IST-2001-37238 PUBLIC 20 / 25

Figure 11: Getting a ResourceInfoProvider instance

Doc. Identifier:
OpenMolGRID-4-D4.2a-0109-0-4-
MetaPlugin

Specification of the Grid interface for classes of
applications to support automated workflows Date: 21/11/2003

7. References

[1]Deliverable D4.5a
Description of the OpenMolGRID Grid architecture, security architecture, and infrastructure and the
deployment of the project’s testbed

[2] UNICORE Plugin Programming Guide, Ralf Ratering (Intel Corp.)
available at http://www.unicore.org/downloads.htm (section “Plugins”)

IST-2001-37238 PUBLIC 21 / 25

Doc. Identifier:
OpenMolGRID-4-D4.2a-0109-0-4-
MetaPlugin

Specification of the Grid interface for classes of
applications to support automated workflows Date: 21/11/2003

8. Terminology / Glossary

AJO Abstract Job Object

Application Wrapper for a Software package, corresponds to UNICORE Application Resource

CGX ComGenex

FZJ Forschungszentrum Jülich

GUI Graphical User Interface

JMC Job Monitor Controller

JPA Job Preparation Area

JRE Java Runtime Environment

MetaPlugin UNICORE Client Plugin supporting workflows

NJS Network Job Supervisor

SW package Software package, e.g. Codessa, Gaussian

TSI Target System Interface

UNICORE Uniform Interface to Computer Resources

Usite UNICORE site, containing one or more Vsites

UT University of Tartu

UU University of Ulster

Vsite UNICORE Virtual Site

WP Work Package

XML Extensible Markup Language

IST-2001-37238 PUBLIC 22 / 25

Doc. Identifier:
OpenMolGRID-4-D4.2a-0109-0-4-
MetaPlugin

Specification of the Grid interface for classes of
applications to support automated workflows Date: 21/11/2003

9. Appendix A: XML document style for workflow description

Workflows consist of tasks, groups and dependencies. Every task and group element within a specific
XML workflow document has a unique ID of type String. The ID is used to indicate dependencies.
The main tag (XML document type) is <workflow>.

9.1. Tasks
A task is given by name, identifier and ID, for example
<task name=”DataBaseRequest” identifier=”SomeQuery” id=”1”>

...
</task>

• The name attribute is used to identify the task within the system, i.e. to find the correct plugin and
the correct server to handle the task.

• The identifier attribute will be used to identify this instance of the task to the user.
• The id must be unique within this workflow, otherwise an error will occur while the system parses

the workflow file.
Tasks have optional attributes.
• export=”true” requests that the output from the task shall be exported from the Uspace, and

thus preserved after the job has finished,
• split=”true” requests that the task shall be distributed to multiple Vsites.

9.1.1. Subtags
The <task> element can contain multiple <option> subtags, giving name/value pairs, as in
<task name=”DataBaseRequest” identifier=”SomeQuery” id=”1”>
 <option name=”Option A” value=”a”/>

<option name=”Option B” value=”some other value”/>
...

</task>

• The supported options are dependent on the name of the task.

9.2. Options
Options are used to further refine <task> and <group> elements, depending on their type.
Options have the syntax
<option name=”optionName” value=”optionValue”/>

with name and value of type string.

9.3. Groups
Groups are given by type, name and id, for example
<group type=”subjob” identifier=”SubJob1” id=”2”>

...
</group>

• The type attribute corresponds to the group containers available in the UNICORE client:
“subjob”, “repeat”, “doN”, “if”, “then”, “else”.

• the identifier attribute will identify this instance of the group to the user
• the id must be unique within the workflow
Groups can be distributed to multiple Vsites by setting the split attribute:
• split=”true” requests that the group shall be distributed to multiple Vsites.

9.3.1. Subtags of <group>
Groups can have the following subtags:

IST-2001-37238 PUBLIC 23 / 25

Doc. Identifier:
OpenMolGRID-4-D4.2a-0109-0-4-
MetaPlugin

Specification of the Grid interface for classes of
applications to support automated workflows Date: 21/11/2003

• multiple <task> elements
• multiple <group> elements
• multiple <dependency> elements
• multiple <option> elements, where supported options depend on the type of group.

9.3.2. DoN group
In groups of type “doN”, the number of iterations can be indicated as follows
<group type=”doN” name=”...” id=”...”>
<option name=”iterations” value=”N”/>
...
</group>

where N is a n integer

9.3.3. If group
In UNICORE, “If” groups are special, since they always have “then” and “else” subgroups, and the
“if” group must not contain executable tasks.
The workflow description reflects this, since in <group type=”if”> elements, “then” and “else” are
mandatory, even if one of the branches is empty.
<group type=”if” name=”...” id=”...”>
...

<group type=”then” name=”...” id=”...”>
 ...
</group>
<group type=”else” name=”...” id=”...”>
 ...
</group>

</group>

9.3.4. Testing return codes
The group types “if” and “repeat” use a return code test, corresponding to the ReturnCodeTest in
UNICORE.
This is specified using three options, as follows:
<group type=”repeat” name=”...” id=”...”>

<option name=”testTask” value=”someTaskID”/>
<option name=”testType” value=”equal|not_equal|successful|not_successful”/>
<option name=”testValue” value=”someInteger”/>

...
</group>

The testValue is ignored in case testType is successful or not_successful.

9.4. Dependencies
Dependencies are used on top-level or within groups to indicate order of execution for tasks and
groups. Dependencies are directed from a predecessor task or group to a successor task or group,
identified by their id , respectively. The syntax is
<dependency pred=”1” succ=”2”/>

which indicates a dependency “1”->”2”. Dependencies must be defined in the group that contains also
the tasks or groups they refer to.

9.5. Summary
Figure 12 summarises the markup language used for workflow descriptions.
A document type definition (DTD) that can be used to validate workflows follows.

IST-2001-37238 PUBLIC 24 / 25

Doc. Identifier:
OpenMolGRID-4-D4.2a-0109-0-4-
MetaPlugin

Specification of the Grid interface for classes of
applications to support automated workflows Date: 21/11/2003

<!ELEMENT workflow (task*, group*, dependency*)>
 <!ELEMENT task (option*)>
 <!ELEMENT option EMPTY>
 <!ATTLIST option
 name CDATA #REQUIRED
 value CDATA #REQUIRED
 >
 <!ATTLIST task
 name CDATA #REQUIRED
 identifier CDATA #REQUIRED
 id CDATA #REQUIRED
 export (true | false) #REQUIRED
 split (true | false) #REQUIRED
 >
 <!ELEMENT group (option*, task*, group*, dependency*)>
 <!ATTLIST group
 type (subjob | repeat | doN | if | then | else) #REQUIRED
 identifier CDATA #REQUIRED
 id CDATA #REQUIRED
 split (true | false) #REQUIRED
 >
 <!ELEMENT dependency EMPTY>
 <!ATTLIST dependency
 pred CDATA #REQUIRED
 succ CDATA #REQUIRED
 >

Document Type Definition of workflow markup XML style

IST-2001-37238 PUBLIC 25 / 25

Figure 12: Workflow markup summary

